
Available

CAV
Evaluation

Artifact

Functional

CAV
Evaluation

Artifact

Marabou 2.0: A Versatile Formal Analyzer of
Neural Networks

Haoze Wu1, Omri Isac2, Aleksandar Zeljić1, Teruhiro Tagomori1,3,
Matthew Daggitt4, Wen Kokke5, Idan Refaeli2, Guy Amir2, Kyle Julian1,

Shahaf Bassan2, Pei Huang1, Ori Lahav2, Min Wu1, Min Zhang6,
Ekaterina Komendantskaya4, Guy Katz2, and Clark Barrett1

1 Stanford University, USA
2 The Hebrew University of Jerusalem, Israel

3 NRI Secure
4 Heriot-Watt University, UK

5 University of Strathclyde, UK
6 East China Normal University, China

Abstract. This paper serves as a comprehensive system description of
version 2.0 of the Marabou framework for formal analysis of neural net-
works. We discuss the tool’s architectural design and highlight the major
features and components introduced since its initial release.

1 Introduction

With the increasing pervasiveness of deep neural networks (DNNs), the formal
analysis of DNNs has become a burgeoning research field within the formal
methods community. Multiple DNN reasoners have been proposed in the past
few years, including α-β-CROWN [56,65,69], ERAN [45–47], Marabou [32], MN-
BaB [16], NNV [35,51], nnenum [4], VeriNet [24,25], and many others.

We focus here on the Marabou [32] tool, which has been used by the research
community in a wide range of formal DNN reasoning applications (e.g., [9,12,17,
18,22,26,34,37,49,54,64,66], inter alia). Initially, Marabou was introduced as a
from-scratch re-implementation of the Reluplex [31] decision procedure, with a
native linear programming engine and limited support for DNN-level reasoning.
Over the years, fundamental changes have been made to the tool, not only from
an algorithmic perspective but also to its engineering and implementation.

This paper introduces version 2.0 of Marabou. Compared to its predecessor,
Marabou 2.0: (i) employs a new build/test system; (ii) has an optimized core
system architecture; (iii) runs an improved decision procedure and abstract inter-
pretation techniques; (iv) handles a wider range of activation functions; (v) sup-
ports proof production; (vi) supports additional input formats; and (vii) contains
a more powerful Python API. Due to these changes, the original system descrip-
tion [32] no longer gives an accurate account of the tool’s current capabilities.
Our goal in this paper is to close this gap and provide a comprehensive descrip-
tion of the current Marabou system. We highlight the major features introduced

https://doi.org/10.5281/zenodo.11116016


2 H. Wu et al.

C++ API

CLIPython API

CEGAR SolverMulti-thread Manager

Abstract Interpretations

Simplex Engine

SMT Solver

(MI)LP Interface

Linear Solving Engine

SMT Core

Context-dependent
Data Structures

Network-level Reasoner

Preprocessor

Proof Module

Back End

Engine

Non-linear Constraints

(In)equations

Piecewise-linear Constraints

Bounds

Input Query

Front End

Fig. 1: High-level overview of Marabou 2.0’s system architecture.

since the initial version, describe a few of its many recent uses, and report on
its performance, as demonstrated by the VNN-COMP’23 results and additional
runtime comparisons against an early version of Marabou.

2 Architecture and Core Components

In this section, we discuss the core components of Marabou 2.0. An overview of its
system architecture is given in Figure 1. At a high level, Marabou performs satis-
fiability checking on a set of linear and non-linear constraints, supplied through
one of the front-end interfaces. The constraints typically represent a verifica-
tion query over a neural network and are stored in an InputQuery object. We
distinguish variable bounds from other linear constraints, and piecewise-linear
constraints (which can be reduced to linear constraints via case analysis) from
more general, non-linear constraints.

Variables are represented as consecutive indices starting from 0. (In)equations
are represented as Equation objects. Piecewise-linear constraints are represented
by objects of classes that inherit from the PiecewiseLinearConstraint abstract
class. The abstract class defines the key interface methods that are implemented
in each sub-class. This way, all piecewise-linear constraints are handled uni-
formly in the back end. Similarly, each other type of non-linear constraint is
implemented as a sub-class of the new NonlinearConstraint abstract class. Ini-
tially, Marabou only supported the ReLU and Max constraints. In Marabou 2.0,
over ten types of non-linear constraints (listed in the extended version of the
paper [61]) are supported.



Marabou 2.0 3

2.1 Engine

The centerpiece of Marabou is called the Engine, which reasons about the satisfi-
ability of the input query. The engine consists of several components: the Prepro-
cessor, which performs rewrites and simplifications; the Network-level Reasoner,
which maintains the network architecture and performs all analyses that require
this knowledge; the SMT Solver, which houses complete decision procedures for
sets of linear and piecewise-linear constraints; and the (MI)LP Interface, which
manages interactions with external (MI)LP solvers for certain optional solving
modes as explained below.

Two additional modules are built on top of the Engine. The Multi-thread
Manager spawns multiple Engine instances to take advantage of multiple pro-
cessors. The CEGAR Solver performs incremental linearization [13,62] for non-
linear constraints that cannot be precisely handled by the SMT Solver.

Preprocessor. Every verification query first goes through multiple preprocess-
ing passes, which normalize, simplify, and rewrite the query. One new normaliz-
ing pass introduces auxiliary variables and entailed linear constraints for each of
the piecewise-linear constraints, so that case splits on the piecewise-linear con-
straints can be represented as bound updates and consequently do not require
adding new equations.7 This accelerates the underlying Simplex engine, as ex-
plained in the SMT Solver section below. Another significant preprocessing pass
involves iterative bound propagation over all constraints. In this process, piece-
wise linear constraints might collapse into linear constraints and be removed.
This pass was present in Marabou 1.0, but could become a runtime bottleneck;
whereas Marabou 2.0 employs a data structure optimization that leads to a ∼60x
speed up. Finally, the preprocessor merges any variables discovered to be equal
to each other and also eliminates any constant variables. This results in updates
to the variable indices, and therefore a mapping from old indices to new ones
needs to be maintained for retrieving satisfying assignments.

SMT Solver. The SMT Solver module implements a sound and complete, lazy-
DPLL(T)-based procedure for deciding the satisfiability of a set of linear and
piecewise-linear constraints. It performs case analysis on the piecewise-linear con-
straints and, at each search state, employs a specialized procedure to iteratively
search for an assignment satisfying both the linear and non-linear constraints.

Presently, the DeepSoI procedure [58] has replaced the Reluplex procedure [31,
32] as Marabou’s default procedure to run at each search state. The former
provably converges to a satisfying assignment (if it exists) and empirically consis-
tently outperforms the latter. DeepSoI extends the canonical sum-of-infeasibilities

7 For example, for a piece-wise linear constraint y = max(x1, x2), we would introduce
c1 : y − x1 = a1 ∧ a1 ≥ 0 ∧ y − x2 = a2 ∧ a2 ≥ 0, where a1 and a2 are fresh
variables. This way, case splits on this constraint can be represented as c2 : a1 ≤ 0
and c3 : a2 ≤ 0, respectively. This preprocessing pass preserves satisfiability because
the original constraint is equisatisfiable to c1 ∧ (c2 ∨ c3).



4 H. Wu et al.

method in convex optimization [10], which determines the satisfiability of a set of
linear constraints by minimizing a cost function that represents the total viola-
tion of the constraints by the current assignment. The constraints are satisfiable
if and only if the optimal value is 0. Similarly, DeepSoI formulates a cost function
that represents the total violation of the current piecewise-linear constraints and
uses a convex solver to stochastically minimize the cost function with respect to
the convex relaxation of the current constraints. In addition, DeepSoI also in-
forms the branching heuristics of the SMT Core, which performs a case split on
the piecewise-linear constraint with the largest impact (measured by the pseu-
docost metric [58]) on the cost function. The DeepSoI procedure is implemented
for all supported piecewise-linear activation functions. The convex solver can be
instantiated either with the native Simplex engine or with an external LP solver
via the (MI)LP interface (detailed below). The latter can be more efficient but
requires the use of external commercial solvers.

One optimization in Marabou 2.0’s Simplex engine is that once the tableau
has been initialized, it avoids introducing any new equations — a costly oper-
ation that requires re-computing the tableau from scratch. This is achieved by
implementing case-splitting and backtracking as updates on variable bounds (as
mentioned above), which only requires minimal updates to the tableau state.
By our measure, this optimization reduces the runtime of the Simplex engine
by over 50%. Moreover, the memory footprint of the solver is also drastically
decreased, as the SMT Core no longer needs to save the entire tableau state
during case-splitting (to be restored during backtracking).

Network-level Reasoner. Over the past few years, numerous papers (e.g.,
[41, 46, 55, 68, 70], inter alia) have proposed abstract interpretation techniques
that rely on network-level reasoning (e.g., propagating the input bounds layer by
layer to tighten output bounds). These analyses can be viewed as a stand-alone,
incomplete DNN verification procedure, or as in-processing bound tightening
passes for the SMT Solver. Marabou 2.0 features a brand new NetworkLevelRea-
soner class that supports this type of analysis. The class maintains the neural
network topology as a directed acyclic graph, where each node is a Layer ob-
ject. The Layer class records key information such as weights, source layers, and
mappings between neuron indices and variable indices. Currently, seven differ-
ent analyses are implemented: [i] 1. interval bound propagation [20]; 2. symbolic
bound propagation [55]; 3. DeepPoly/CROWN analysis [46, 70]; 4. LP-based
bound tightening [50]; 5. Forward-backward analysis [59]; 6. MILP-based bound
tightening [50]; and 7. iterative propagation [57]. Analyses 2–7 are implemented
in a parallelizable manner, and analyses 4–7 require calls to an external LP
solver. By default, the DeepPoly/CROWN analysis is performed. The Network-
level Reasoner tightly interleaves with the SMT Solver: the network-level reason-
ing is executed any time a new search state is reached (with the most up-to-date
variable bounds), and the derived bound tightenings are immediately fed back
to the search procedure.



Marabou 2.0 5

It is noteworthy that the user does not have to explicitly provide the neural
network topology to enable network-level reasoning. Instead, the network ar-
chitecture is automatically inferred from the given set of linear and non-linear
constraints, via the constructNetworkLevelReasoner method in the InputQuery
class. The Network-level Reasoner is only initialized if such inference is success-
ful. Apart from the abstract interpretation passes, the Network-level Reasoner
can also evaluate concrete inputs. This is used to implement the LP-based bound
tightening optimization introduced by the NNV tool [51].

(MI)LP Interface. Marabou can now optionally be configured to invoke the
Gurobi Optimizer [23], a state-of-the-art Mixed Integer Linear Programming
(MILP) solver. The GurobiWrapper class contains methods to construct a MILP
problem and invoke the solver. The MILPEncoder class is in charge of encod-
ing the current set of linear and non-linear constraints as (MI)LP constraints.
Piecewise-linear constraints can either be encoded precisely, or replaced with a
convex relaxation, resulting in a linear program. For other non-linear constraints,
only the latter option is available. The (MI)LP interface presently has three us-
ages in the code base. Two have already been mentioned, i.e., in some of the
abstract interpretation passes and optionally in the DeepSoI procedure. Addi-
tionally, when Marabou is compiled with Gurobi, a --milp mode is available, in
which the Engine performs preprocessing and abstract interpretation passes, and
then directly encodes the verification problem as a MILP problem to be solved
by Gurobi. The mode is motivated by the observation that the performance of
Gurobi and the SMT Solver can be complementary [48,58].

Multi-thread Manager. Parallelization is an important way to improve verifi-
cation efficiency. Marabou supports two modes of parallelization, both managed
by the new MultiThreadManager class: the split-and-conquer mode [57] and the
portfolio mode. In the split-and-conquer mode, the original query is dynami-
cally partitioned and re-partitioned into independent sub-queries, to be handled
by idle workers. The partitioning strategy is implemented as a sub-class of the
QueryDivider abstract class. Currently, two strategies are available: one parti-
tions the intervals of the input variables; the other splits on piecewise linear
constraints. By default, the former is used only when the input dimension is
less than or equal to ten. In the portfolio mode, each worker solves the same
query with a different random seed, which takes advantage of the stochastic na-
ture of the DeepSoI procedure. Developing an interface to define richer kinds of
portfolios is work in progress.

CEGAR Solver. While the DNN verification community has by and large
focused on piecewise-linear activation functions, other classes of non-linear con-
nections exist and are commonly used for certain architectures [27, 53]. Apart
from introducing support for non-linear constraints in the Preprocessor and the
Network-level Reasoner, the latest Marabou version also incorporates a counter-
example guided abstraction refinement (CEGAR) solving mode [62], based on



6 H. Wu et al.

incremental linearization [13] to enable more precise reasoning about non-linear
constraints that are not piecewise linear. Currently, the CEGAR solver only
supports Sigmoid and Tanh, but the module can be extended to handle other
activation functions.

2.2 Context-Dependent Data-Structures

When performing a case split or backtracking to a previous search state, the
SMT Core needs to save or restore information such as variable bounds and
the phase status of each piecewise-linear constraint (e.g., is a ReLU currently
active, inactive, or unfixed). To efficiently support these operations, Marabou
2.0 uses the notion of a context level (borrowed from the CVC4 SMT solver [6]),
and stores the aforementioned information in context-dependent data structures.
These data structures behave similarly to their standard counterparts, except
that they are associated with a context level and automatically save and restore
their state as the context increases or decreases. This major refactoring has
greatly simplified the implementation of saving and restoring solver states and
is an important milestone in an ongoing effort to integrate a full-blown Conflict-
Driven Clause-Learning (CDCL) mechanism into Marabou.

2.3 Proof Module

A proof module has recently been introduced into Marabou, enabling it to op-
tionally produce proof certificates after an unsatisfiable (UNSAT) [29] result.
This is common practice in the SAT and SMT communities and is aimed at
ensuring solver reliability. Marabou produces proof certificates based on a con-
structive variant of the Farkas lemma [52], which ensures the existence of a proof
vector that witnesses the unsatisfiability of a linear program. Specifically, the
proof vector corresponds to a linear equation that is violated by the variable
bounds [29]. The full certificate of UNSAT is comprised of a proof tree, whose
nodes represent the search states explored during the solving. Each node may
contain a list of lemmas that are used as additional constraints in its descen-
dent nodes; and each leaf node contains the proof vector for the unsatisfiability
of the corresponding sub-query. The lemmas encapsulate some of the variable
bounds, newly derived by the piecewiese-linear constraints of the query, and
require their own witnesses (i.e., proof vectors). The BoundExplainer class is re-
sponsible for constructing all proof vectors, for updating them during execution,
and for appending them to the node. The proof tree itself is implemented using
the UnsatCertificateNode class.

When the solver is run in proof-production mode, the Proof module closely
tracks the steps of the SMT Solver module and constructs the proof tree on the
fly: new nodes are added to the tree whenever a case split is performed; and a
new proof vector is generated whenever a lemma is learned or UNSAT is derived
for a sub-query. If the Engine concludes that the entire query is UNSAT, a proof
checker (implemented as an instance of the Checker class) will be triggered
to certify the proof tree. It does so by traversing the tree and certifying the



Marabou 2.0 7

Q = Marabou.read_onnx("model.onnx")
X, Y = Q.inputVars[0], Q.outputVars[0]
Q.setLowerBound(X[0], 0.1)
Q.addInequality([Y[0], Y[1]], [1, -0.5], 0)
Q.solve()

(a) The base Python API

Q = Marabou.read_onnx("model.onnx")
X, Y = Q.inputVars[0], Q.outputVars[0]
Q.addConstraint(Var(X[0]) >= 0.1)
Q.addConstraint(Var(Y[0]) <= 0.5 * Var(Y[1]))
Q.solve()

(b) The “Pythonic” API

Fig. 2: Two ways to define the same verification query through the Python API.

correctness of the lemmas and the unsatisfiability of the leaf nodes. A formally
verified and precise proof-checker is currently under development [14]. Note that,
currently, proof production mode is only compatible with a subset of the features
supported by Marabou. Adding support for the remaining features (e.g., for the
parallel solving mode) is an ongoing endeavor.

2.4 Front End

Marabou provides interfaces to prepare input queries and invoke the back-end
solver in multiple ways. The Marabou executable can be run on the command
line, taking in network/property/query files in supported formats. The Python
and C++ APIs support this functionality as well, but also contain methods to
add arbitrary linear and (supported) non-linear constraints. In addition, a layer
on top of the Python API was added to Marabou 2.0 which allows users to
define constraints in a more Pythonic manner, resulting in more succinct code.
For example, suppose one wants to check whether the first output of a network
(stored in the ONNX format) can be less than or equal to half of its second
output, when the first input is greater than or equal to 0.1. Figure 2a shows how
to perform this check with the base Python API, while Figure 2b exhibits the
“Pythonic” API.

Typically, a query consists of the encoding of (one or several) neural networks
and the encoding of a property on the network(s). To encode a neural network,
the user has two options: 1) pass in a neural network file to be parsed by one of
the neural network parsers; or 2) manually add constraints to encode the neu-
ral network. The main network format for Marabou 2.0 is now ONNX, towards
which the neural network verification community is converging. The NNet for-
mat and the Tensorflow protobuf format are still supported but will likely be
phased out in the long run. To encode the property on top of the neural network
encoding, the user can 1) pass in a property file to be parsed by one of the prop-
erty parsers; or 2) manually encode the property. Currently Marabou has two
property parsers, one for a native property file format [32], and a new one for
the VNN-LIB format, supporting the standardization effort of the community.

In addition to the aforementioned network and property file formats, Marabou
also supports a native query file format that describes a set of linear and non-
linear constraints. This can be dumped/parsed from all interfaces.



8 H. Wu et al.

2.5 Availability, License, and Installation

Marabou is available under the permissive modified BSD open-source license, and
runs on Linux and macOS machines. The tool can be built from scratch using
CMake. Marabou is now also available on The Python Package Index (PyPI)
and can be installed through pip. The latest version of Marabou is available
at: https://github.com/NeuralNetworkVerification/Marabou. The artifact
associated with this tool description is archived on Zenodo [60].

3 Highlighted Features and Applications

In terms of performance, Marabou is on par with state-of-the-art verification
tools. In the latest VNN-COMP [11], Marabou won the second place overall,
and scored the highest among all CPU-based verifiers. We summarize the main
results in the extended version of the paper [61]. In this section, we focus on
the usability aspect of Marabou, and highlight some of its recent applications
— as well as the features that make them possible. We believe this diverse set
of use cases (as well as the relevant scripts in the artifact [60]) serve as valuable
examples, which will inspire new ways to apply the solver. More use cases can
be found in the extended version of the paper [61]. A runtime evaluation of
Marabou 2.0 against an early version appears in Section 4.

Verifying the Decima job scheduler. Recently, Graph Neural Networks
(GNNs) have been used to schedule jobs over multi-user, distributed-computing
clusters, achieving state-of-the-art job completion time [38]. However, concerns
remain over whether GNN-based solutions satisfy expected cost-critical proper-
ties beyond performance. Marabou has been used to verify a well-known fair-
ness property called strategy-proofness [59] for a high-profile, state-of-the-art
GNN-based scheduler called Decima [38]. The verified property states that “a
user cannot get their job scheduled earlier by misrepresenting their resource re-
quirement.” While it is challenging to represent a GNN directly in ONNX [21],
Marabou’s Python API makes it possible to manually encode Decima and the
specification as a set of linear and non-linear constraints. From these constraints,
the Network-level Reasoner is able to automatically infer a feed-forward structure
with residual connections and then use it for the purpose of abstract interpre-
tation. Notably, Marabou was able to handle the original Decima architecture,
proving that the property holds on the vast majority of the examined job profiles
but can indeed be violated in some cases.

Formal XAI. Despite their prevalence, DNNs are considered “black boxes”,
uninterpretable to humans. Explainable AI (XAI) aims to understand DNN de-
cisions to enhance trust. Most XAI methods are heuristic-based and lack for-
mal correctness guarantees [36, 43, 44], which can be problematic for critical,
regulation-heavy systems. Recent work showed that Marabou can be utilized as

https://github.com/NeuralNetworkVerification/Marabou


Marabou 2.0 9

a sub-routine in procedures designed for producing formal and provable expla-
nations for DNNs [7, 8, 26, 37, 63]. For instance, it can be used in constructing
formal abductive explanations [8, 28], which are subsets of input features that
are, by themselves, provably sufficient for determining the DNN’s output. This
approach has been successfully applied to large DNNs in the domains of com-
puter vision [8, 63], NLP [37], and DRL robotic navigation [7]. These studies
highlight the potential of Marabou in tasks that go beyond formal verification.

Analyzing learning-based robotic systems. Deep Reinforcement Learning
has extensive application in robotic planning and control. Marabou has been
applied in these settings to analyze different safety and liveness properties [2,3,
15, 54]. For example, Amir et al. [2] used Marabou to detect infinite loops in a
real-world robotic navigation platform. This was achieved by querying whether
there exists a state to which the robot will always return within a finite number
of steps k, effectively entering an infinite loop. A multi-step property like this
can be conveniently encoded in Marabou, by (i) encoding k copies of the control
policy; (ii) for each time-step t, encoding the system transition as constraints
over the current state (input to the policy at t), the decided action (output of the
policy at t), and the next state (input to the policy at t+ 1); and (iii) encoding
the “loop” constraint that the initial state (t1) is equal to the final state (tk).
From this set of constraints, the Network-level Reasoner can infer the structure
of and perform abstract interpretations over a concatenated network, where the
input is the initial state and the output is the final state. Moreover, due to the
low input dimension, the split-and-conquer mode in the Multi-thread Manager
can be used to perform input-splitting, effectively searching for such loops in
independent input regions in parallel. Notably, Marabou can detect loops in the
system for agents trained using state-of-the-art RL algorithms, in cases where
gradient/optimization-based approaches fail to find any. Loops detected this way
have also been observed in the real world [1].

Proof production for the ACAS-Xu benchmarks. A well-studied set of
benchmarks in DNN verification derives from an implementation of the ACAS-
Xu airborne system for collision avoidance [30]. Using Marabou, we were able
to produce certificates of unsatisfiability for these benchmarks for the first time.
Marabou was able to produce certificates for 113 out of the 180 tested bench-
marks, with only mild overhead incurred by proof generation and certification.
The proof certificates contained over 1.46 million proof-tree leaves, of which more
than 99.99% were certified by the native proof checker, while the remaining were
certified by a trusted SMT solver. Additional details are provided in [29].

Specifications on neural activation patterns. Properties of hidden neu-
rons garner increasing interest [67], as they shed light on the internal decision-
making process of the neural network. Gopinath et al. [19] observed that for
a fixed neural network, certain neuron activation patterns (NAPs) empirically



10 H. Wu et al.

entail a fixed prediction. More recently, Geng et al. [18] formally verified (using
Marabou) the aforementioned property, along with a variety of other properties
related to NAPs. Specifications related to NAPs can be conveniently encoded in
Marabou. For example, specifying that a certain ReLU is activated amounts to
setting the lower bound of the variable corresponding to the ReLU input to 0,
using the general constraint-encoding methods in the Python/C++ API. Con-
straints on internal neurons, as with other constraints, can be propagated by the
Preprocessor and Network-level Reasoner to tighten bounds.

Robustness against semantically meaningful perturbations. Consider-
ing specifications of perception networks, there is an ongoing effort in the verifi-
cation community to go beyond adversarial robustness [5,33,39,40,62]. Marabou
has been used to verify robustness against semantically meaningful perturbations
that can be analytically defined/abstracted as linear constraints on the neural
network inputs (e.g., brightness, uniform haze) [42]. More recently, Marabou has
also been successfully applied in a neural symbolic approach, where the correct
network behavior is defined with respect to that of another network [62,64]. For
example, Wu et al. [62] considered the specification that an image classifier’s pre-
diction does not change with respect to outputs of an image generative model
trained to capture a complex distribution shift (e.g., change in weather condi-
tion). A property like this can be conveniently defined in Marabou by loading
the classifier and the generator through the Python API and adding the relevant
constraints on/between their input and output variables.

4 Runtime Evaluation

2x10x

0.1

1.0

10.0

100.0

1000.0

0.1 1.0 10.0 100.0 1000.0
Marabou (commit 1c1c66)

M
ar

ab
ou

 2
.0

Application
Alt. Loops
DeepCert
NAP
VeriX

Fig. 3: Runtime performance of Marabou 2.0
and an early version of Marabou on four ap-
plications supported by both versions.

We measure the performance im-
provement in Marabou 2.0 by
comparing it against an early
Marabou version (git commit
1c1c66), which can handle ReLU
and Max constraints and supports
symbolic bound propagation [55].
We collected four benchmark sets
from the applications described in
Section 3: Alternating Loop [2],
DeepCert [42], NAP [18, 19], and
VeriX [63]. There are 745 in-
stances in total. Details about the
benchmarks can be found in the
extended version of the paper [61].

Figure 3 compares the runtime
of the two Marabou versions on
all the benchmarks with a 1 hour
CPU timeout. Each configuration

1c1c66


Marabou 2.0 11

was given 1 core and 8GB of memory. Note that Marabou 2.0 was not configured
with external solvers in this experiment. We see that Marabou 2.0 is significantly
more efficient for a vast majority of the instances. Upon closer examination, an
at-least 2× speed-up is achieved on 428 instances and an at-least 10× speed-up
is achieved on 263 instances. Moreover, Marabou 2.0 is also significantly more
memory efficient, with a median peak usage of 57MB (versus 604MB with the
old version). Solvers’performance on individual benchmarks is reported in the
extended version of the paper [61].

5 Conclusion and Next Steps

We have summarized the current state of Marabou, a maturing formal analyzer
for neural-network-enabled systems that is under active development. In its cur-
rent form, Marabou is a versatile and user-friendly toolkit suitable for a wide
range of formal analysis tasks. Moving forward, we plan to improve Marabou in
several dimensions. Currently, we are actively integrating a CDCL mechanism in
the SMT Solver module. Given that many applications involve repeated invoca-
tion of the solver on similar queries, we also plan to support incremental solving
in the style of pushing and popping constraints, leveraging the newly introduced
context-dependent data structures. In addition, adding GPU support (in the
Network-level Reasoner) and handling other types of non-linear constraints are
also on the development agenda for Marabou.

Acknowledgment The work of Wu, Zeljić, Tagomori, Huang and Wu was par-
tially supported by the NSF (grant number 2211505), by the BSF (grant number
2020250), a Ford Alliance Project (199909), the Stanford Center for AI Safety,
and the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The
work of Daggit, Kokke and Komendantskaya was partially supported by the EP-
SRC grant EP/T026952/1, AISEC: AI Secure and Explainable by Construction.
The work of Isac, Refaeli, Amir, Bassan, Lahav and Katz was partially funded
by the ISF (grant number 3420/21), by the BSF (grant numbers 2021769 and
2020250), and by the European Union (ERC, VeriDeL, 101112713). Views and
opinions expressed are however those of the author(s) only and do not neces-
sarily reflect those of the European Union or the European Research Council
Executive Agency. Neither the European Union nor the granting authority can
be held responsible for them. The work of Zhang was partially supported by the
NSFC (grant number 62161146001).



12 H. Wu et al.

References

1. Amir, G., Corsi, D., Yerushalmi, R., Marzari, L., Harel, D., Farinelli, A., Katz,
G.: Verifying Learning-Based Robotic Navigation Systems: Supplementary Video
(2022), https://youtu.be/QIZqOgxLkAE

2. Amir, G., Corsi, D., Yerushalmi, R., Marzari, L., Harel, D., Farinelli, A., Katz, G.:
Verifying Learning-Based Robotic Navigation Systems. In: Proc. 29th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
pp. 607–627 (2023)

3. Amir, G., Schapira, M., Katz, G.: Towards Scalable Verification of Deep Reinforce-
ment Learning. In: Proc. 21st Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD). pp. 193–203 (2021)

4. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved Geometric Path Enu-
meration for Verifying ReLU Neural Networks. In: International Conference on
Computer Aided Verification. pp. 66–96. Springer (2020)

5. Balunovic, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying Geomet-
ric Robustness of Neural Networks. Advances in Neural Information Processing
Systems 32 (2019)

6. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: International Conference on Computer Aided
Verification. pp. 171–177. Springer (2011)

7. Bassan, S., Amir, G., Corsi, D., Refaeli, I., Katz, G.: Formally Explaining Neural
Networks within Reactive Systems. In: Proc. 23rd Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD). pp. 10–22 (2023)

8. Bassan, S., Katz, G.: Towards Formal XAI: Formally Approximate Minimal Ex-
planations of Neural Networks. In: Proc. 29th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). pp. 187–207 (2023)

9. Bauer-Marquart, F., Boetius, D., Leue, S., Schilling, C.: SpecRepair: Counter-
Example Guided Safety Repair of Deep Neural Networks. In: International Sym-
posium on Model Checking Software (SPIN). Springer (2022)

10. Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge university press
(2004)

11. Brix, C., Bak, S., Liu, C., Johnson, T.T.: The Fourth International Verification of
Neural Networks Competition (VNN-COMP 2023): Summary and Results. arXiv
preprint arXiv:2312.16760 (2023)

12. Christakis, M., Eniser, H.F., Hermanns, H., Hoffmann, J., Kothari, Y., Li, J.,
Navas, J.A., Wüstholz, V.: Automated Safety Verification of Programs Invoking
Neural Networks. In: International Conference on Computer Aided Verification.
pp. 201–224. Springer (2021)

13. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental Lin-
earization for Satisfiability and Verification modulo Nonlinear Arithmetic and
Transcendental Functions. ACM Transactions on Computational Logic (TOCL)
19(3), 1–52 (2018)

14. Desmartin, R., Isac, O., Passmore, G., Stark, K., Komendantskaya, E., Katz,
G.: Towards a Certified Proof Checker for Deep Neural Network Verification. In:
Proc. 33rd Int. Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR). pp. 198–209 (2023)

15. Eliyahu, T., Kazak, Y., Katz, G., Schapira, M.: Verifying Learning-Augmented
Systems. In: Proc. Conf. of the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM). pp. 305–318 (2021)

https://youtu.be/QIZqOgxLkAE


Marabou 2.0 13

16. Ferrari, C., Mueller, M.N., Jovanović, N., Vechev, M.: Complete Verification via
Multi-Neuron Relaxation Guided Branch-and-Bound. In: International Conference
on Learning Representations (2022)

17. Funk, N., Baumann, D., Berenz, V., Trimpe, S.: Learning Event-triggered Control
from Data through Joint Optimization. IFAC Journal of Systems and Control 16
(2021)

18. Geng, C., Le, N., Xu, X., Wang, Z., Gurfinkel, A., Si, X.: Towards Reliable Neural
Specifications. In: International Conference on Machine Learning. pp. 11196–11212.
PMLR (2023)

19. Gopinath, D., Converse, H., Pasareanu, C., Taly, A.: Property inference for deep
neural networks. In: 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). pp. 797–809. IEEE (2019)

20. Gowal, S., Dvijotham, K., Stanforth, R., Bunel, R., Qin, C., Uesato, J., Arand-
jelovic, R., Mann, T., Kohli, P.: On the Effectiveness of Interval Bound Propagation
for Training Verifiably Robust Models. arXiv preprint arXiv:1810.12715 (2018)

21. Graph Neural Networks support in ONNX (2022): https://github.com/

microsoft/onnxruntime/issues/12103

22. Guidotti, D., Leofante, F., Pulina, L., Tacchella, A.: Verification of Neural Net-
works: Enhancing Scalability Through Pruning. In: European Conference on Arti-
ficial Intelligence, pp. 2505–2512. IOS Press (2020)

23. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2023), https:
//www.gurobi.com

24. Henriksen, P., Lomuscio, A.: DEEPSPLIT: An Efficient Splitting Method for Neu-
ral Network Verification via Indirect Effect Analysis. In: International Joint Con-
ference on Artificial Intelligence. pp. 2549–2555. ijcai.org (8 2021)

25. Henriksen, P., Lomuscio, A.R.: Efficient Neural Network Verification via Adap-
tive Refinement and Adversarial Search. In: Giacomo, G.D., Catalá, A., Dilkina,
B., Milano, M., Barro, S., Bugaŕın, A., Lang, J. (eds.) European Conference on
Artificial Intelligence. vol. 325, pp. 2513–2520. IOS Press (2020)

26. Huang, X., Marques-Silva, J.: From Robustness to Explainability and Back Again.
arXiv preprint arXiv:2306.03048 (2023)

27. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal Unsupervised Image-
to-Image Translation. In: European conference on computer vision. pp. 172–189
(2018)

28. Ignatiev, A., Narodytska, N., Marques-Silva, J.: Abduction-based Explanations for
Machine Learning Models. In: AAAI Conference on Artificial Intelligence. vol. 33,
pp. 1511–1519. AAAI Press (2019)

29. Isac, O., Barrett, C., Zhang, M., Katz, G.: Neural Network Verification with Proof
Production. In: Proc. 22nd Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD). pp. 38–48 (2022)

30. Julian, K., Kochenderfer, M., Owen, M.: Deep Neural Network Compression for
Aircraft Collision Avoidance Systems. Journal of Guidance, Control, and Dynamics
42(3), 598–608 (2019)

31. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In: Proc. 29th Int. Conf. on
Computer Aided Verification (CAV). pp. 97–117 (2017)

32. Katz, G., Huang, D., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., Dill, D., Kochenderfer, M., Barrett, C.: The
Marabou Framework for Verification and Analysis of Deep Neural Networks. In:
Proc. 31st Int. Conf. on Computer Aided Verification (CAV). pp. 443–452 (2019)

https://github.com/microsoft/onnxruntime/issues/12103
https://github.com/microsoft/onnxruntime/issues/12103
https://www.gurobi.com
https://www.gurobi.com


14 H. Wu et al.

33. Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification of Image-
based Neural Network Controllers using Generative Models. Journal of Aerospace
Information Systems 19(9), 574–584 (2022)

34. Liu, C., Cofer, D., Osipychev, D.: Verifying an Aircraft Collision Avoidance Neu-
ral Network with Marabou. In: NASA Formal Methods Symposium. pp. 79–85.
Springer (2023)

35. Lopez, D.M., Choi, S.W., Tran, H., Johnson, T.T.: NNV 2.0: The Neural Network
Verification Tool. In: Enea, C., Lal, A. (eds.) International Conference on Computer
Aided Verification. vol. 13965, pp. 397–412. Springer (2023)

36. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Advances in neural information processing systems 30 (2017)

37. Malfa, E.L., Michelmore, R., Zbrzezny, A.M., Paoletti, N., Kwiatkowska, M.: On
Guaranteed Optimal Robust Explanations for NLP Models. In: International Joint
Conference on Artificial Intelligence. pp. 2658–2665. ijcai.org (2021)

38. Matheson, R.: AI system optimally allocates workloads across thousands of servers
to cut costs, save energy. Tech Xplore (2019), https://techxplore.com/news/

2019-08-ai-optimally-allocates-workloads-thousands.html
39. Mirman, M., Hägele, A., Bielik, P., Gehr, T., Vechev, M.: Robustness Certifica-

tion with Generative Models. In: ACM SIGPLAN International Conference on
Programming Language Design and Implementation. pp. 1141–1154 (2021)

40. Mohapatra, J., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Towards Verifying
Robustness of Neural Networks against a Family of Semantic Perturbations. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 244–252
(2020)

41. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Prima: general
and precise neural network certification via scalable convex hull approximations.
Proceedings of the ACM on Programming Languages 6(POPL), 1–33 (2022)

42. Paterson, C., Wu, H., Grese, J., Calinescu, R., Păsăreanu, C.S., Barrett, C.: Deep-
cert: Verification of contextually relevant robustness for neural network image clas-
sifiers. In: Computer Safety, Reliability, and Security. vol. 12852, pp. 3–17. Springer
(2021)

43. Ribeiro, M.T., Singh, S., Guestrin, C.: ” Why should i trust you?” Explaining
the Predictions of any Classifier. In: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 1135–1144 (2016)

44. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision Model-agnostic
Explanations. In: AAAI conference on artificial intelligence. vol. 32, pp. 1527–1535.
AAAI Press (2018)

45. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the Single Neuron Convex
Barrier for Neural Network Certification. Advances in Neural Information Process-
ing Systems 32, 15098–15109 (2019)

46. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An Abstract Domain for Certifying
Neural Networks. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

47. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting Robustness Certification of
Neural Networks. In: International Conference on Learning Representations (2019)

48. Strong, C., Wu, H., Zeljić, A., Julian, K., Katz, G., Barrett, C., Kochenderfer,
M.: Global Optimization of Objective Functions Represented by ReLU Networks.
Journal of Machine Learning pp. 1–28 (2021)

49. Sun, Y., Usman, M., Gopinath, D., Păsăreanu, C.S.: VPN: Verification of Poisoning
in Neural Networks. In: International Workshop on Numerical Software Verification
(NSV). pp. 3–14. Springer (2022)

https://techxplore.com/news/2019-08-ai-optimally-allocates-workloads-thousands.html
https://techxplore.com/news/2019-08-ai-optimally-allocates-workloads-thousands.html


Marabou 2.0 15

50. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019)

51. Tran, H.D., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang, W.,
Bak, S., Johnson, T.T.: NNV: the Neural Network Verification Tool for Deep Neural
Networks and Learning-enabled Cyber-Physical Systems. In: International Confer-
ence on Computer Aided Verification. pp. 3–17. Springer (2020)

52. Vanderbei, R.: Linear Programming: Foundations and Extensions. Journal of the
Operational Research Society (1998)

53. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all nou need. Advances in neural information pro-
cessing systems 30 (2017)

54. Vinzent, M., Sharma, S., Hoffmann, J.: Neural Policy Safety Verification via Pred-
icate Abstraction: CEGAR. In: AAAI Conference on Artificial Intelligence. pp.
15188–15196. AAAI Press (2023)

55. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient Formal Safety
Analysis of Neural Networks. Advances in Neural Information Processing Systems
31, 6369–6379 (2018)

56. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-
crown: Efficient Bound Propagation with Per-neuron Split Constraints for Neural
Network Robustness Verification. Advances in Neural Information Processing Sys-
tems 34, 29909–29921 (2021)

57. Wu, H., Ozdemir, A., Zeljić, A., Irfan, A., Julian, K., Gopinath, D., Fouladi, S.,
Katz, G., Păsăreanu, C., Barrett, C.: Parallelization Techniques for Verifying Neu-
ral Networks. In: Proc. 20th Int. Conf. on Formal Methods in Computer-Aided
Design (FMCAD). pp. 128–137 (2020)

58. Wu, H., Zeljić, A., Katz, G., Barrett, C.: Efficient Neural Network Analysis with
Sum-of-Infeasibilities. In: Proc. 28th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). pp. 143–163 (2022)

59. Wu, H., Barrett, C., Sharif, M., Narodytska, N., Singh, G.: Scalable Verification of
GNN-based Job Schedulers. Proceedings of the ACM on Programming Languages
6(OOPSLA), 1036–1065 (2022)

60. Wu, H., Isac, O., Zeljić, A., Tagomori, T., Daggitt, M., Kokke, W., Refaeli, I., Amir,
G., Julian, K., Bassan, S., et al.: Artifact for Marabou 2.0: A Versatile Formal An-
alyzer of Neural Networks (Sep 2022). https://doi.org/10.5281/zenodo.11116016,
https://doi.org/10.5281/zenodo.11116016

61. Wu, H., Isac, O., Zeljić, A., Tagomori, T., Daggitt, M., Kokke, W., Refaeli, I.,
Amir, G., Julian, K., Bassan, S., et al.: Marabou 2.0: A Versatile Formal Analyzer
of Neural Networks. arXiv preprint arXiv:2401.14461 (2024)

62. Wu, H., Tagomori, T., Robey, A., Yang, F., Matni, N., Pappas, G., Hassani, H.,
Pasareanu, C., Barrett, C.: Toward Certified Robustness against Real-world Distri-
bution Shifts. In: IEEE Conference on Secure and Trustworthy Machine Learning.
pp. 537–553. IEEE (2023)

63. Wu, M., Wu, H., Barrett, C.: VeriX: Towards Verified Explainability of Deep Neural
Networks. Advances in neural information processing systems (2022)

64. Xie, X., Kersting, K., Neider, D.: Neuro-Symbolic Verification of Deep Neural
Networks. In: International Joint Conferences on Artificial Intelligence. pp. 3622–
3628. ijcai.org (2022)

65. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.W., Huang, M., Kailkhura, B., Lin,
X., Hsieh, C.J.: Automatic Perturbation Analysis for Scalable Certified Robustness

https://doi.org/10.5281/zenodo.11116016
https://doi.org/10.5281/zenodo.11116016


16 H. Wu et al.

and Beyond. Advances in Neural Information Processing Systems 33, 1129–1141
(2020)

66. Yerushalmi, R.: Enhancing Deep Reinforcement Learning with Executable Specifi-
cations. In: International Conference on Software Engineering. pp. 213–217. IEEE
(2023)

67. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding Neural
Networks through Deep Visualization. arXiv preprint arXiv:1506.06579 (2015)

68. Zelazny, T., Wu, H., Barrett, C., Katz, G.: On Reducing Over-Approximation Er-
rors for Neural Network Verification. In: Proc. 22nd Int. Conf. on Formal Methods
in Computer-Aided Design (FMCAD). pp. 17–26 (2022)

69. Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hsieh, C.J., Kolter, J.Z.:
General Cutting Planes for Bound-propagation-based Neural Network Verification.
Advances in Neural Information Processing Systems 35, 1656–1670 (2022)

70. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient Neural Net-
work Robustness Certification with General Activation Functions. Advances in
Neural Information Processing Systems 31, 4944–4953 (2018)


	Marabou 2.0: A Versatile Formal Analyzer of Neural Networks

